K-means clustering for efficient and robust registration of multi-view point sets

نویسندگان

  • Zutao Jiang
  • Jihua Zhu
  • Shanmin Pang
  • Yaochen Li
  • Jun Wang
چکیده

Efficiency and robustness are the important performance for the registration of multi-view point sets. To address these two issues, this paper casts the multi-view registration into a clustering problem, which can be solved by the extended K-means clustering algorithm. Before the clustering, all the centroids are uniformly sampled from the initially aligned point sets involved in the multi-view registration. Then, two standard K-means steps are utilized to assign all points to one special cluster and update each clustering centroid. Subsequently, the shape comprised by all cluster centroids can be used to sequentially estimate the rigid transformation for each point set. These two standard K-means steps and the step of transformation estimation constitute the extended K-means clustering algorithm, which can achieve the clustering as well as the multi-view registration by iterations. To show its superiority, the proposed approach has tested on some public data sets and compared with the-state-of-art algorithms. Experimental results illustrate its good efficiency and robustness for the registration of multi-view point sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DPML-Risk: An Efficient Algorithm for Image Registration

Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...

متن کامل

Bi-Stage Large Point Set Registration Using Gaussian Mixture Models

Point set registration is to determine correspondences between two different point sets, then recover the spatial transformation between them. Many current methods, become extremely slow as the cardinality of the point set increases; making them impractical for large point sets. In this paper, we propose a bi-stage method called bi-GMMTPS, based on Gaussian Mixture Models and Thin-Plate Splines...

متن کامل

Multi-View Point Registration via Alternating Optimization

Multi-view point registration is a relatively less studied problem compared with two-view point registration. Directly applying pairwise registration often leads to matching discrepancy as the mapping between two point sets can be determined either by direct correspondences or by any intermediate point set. Also, the local two-view registration tends to be sensitive to noises. We propose a nove...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.05193  شماره 

صفحات  -

تاریخ انتشار 2017